Due to the current coronavirus pandemic, populations all over the world have experienced an extraordinary shock. The unprecedented challenge reveals vulnerability to calamities in communities, which translates into uncertainty, stress, and anxiety among individuals in a community. Thus, the level of community resilience could be a determinant of recovery time for communities confronted with these novel risks that are changing human lifestyles (Faulkner, Brown, & Quinn, 2018). In this respect, enhancing community resilience to hazards is a major question for researchers and policymakers. The sport industry is a potential economic and social driver, generating significant tangible and intangible community benefits in region-based resilience development. Given the role of sport within communities, it is critical to empirically assess the connection between sport and community resilience. Despite the importance of the sport industry for a community, less scholarly efforts in sport management have been invested in the understanding of the association. This study is the first attempt in sport management to examine the spatially heterogeneous effects of the sport industry on community resilience. Specifically, we attempt to (a) examine whether a variety of sport industry sectors influence community resilience and (b) assess how the effects of sport industry sectors on community resilience are spatially heterogeneous. To achieve the purpose, spatial regression analysis using geographically weighted regression (GWR) with geographic information system (GIS)-based mapping was employed.

Florida was selected as the study area for the following reasons. First, sport-related organizations in Florida are critical resources for economic impact (e.g., approximately $23 billion of economic impact in 2015 and 2016). Second, Florida communities have recently been exposed to various slow-onset risks (e.g., climate change) and fast-onset risks (e.g., hurricanes). The GWR model shows the spatially heterogeneous effects of sport industry sectors on community resilience that cannot be detected by an ordinary least squares (OLS)-based aspatial model. It represents the spatially heterogeneous effects of county-level sport industry concentration and community resilience, identifying where a variety of sport industry sectors have significant impacts to enhance community resilience. For example, the effects of golf courses and country clubs on community resilience in global association by the OLS-based model are negative ($\beta=-0.002$), whereas spatial clustering analysis using GWR-based local coefficients shows that the northeastern region of Florida has a significant high–high cluster (hot sport; global Moran’s I: 0.50, p < .05) for the positive effect of golf courses and country clubs. This indicates that the sport industry sectors do not have the same impact on community resilience in all regions. Effects may differ for different industrial locations even within one industry sector, suggesting the presence of a mechanism affected by regional specificities in the association between the sport industry and community resilience. The findings of this study could be a starting point for a better understanding of the spatial pattern of the association of sport industry sectors with community resilience by considering regional differences, as well as a tool for location-specific community resilience development.